
International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 584
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Variability Management in Software
Development using FeatureIDE : A Case

Study
Asif Irshad Khan1, Md. Mottahir Alam2 and Wajdi Al Jedaibi1

 1Department of Computer Science, FCIT, King AbdulAziz University, Jeddah, Saudi Arabia.
 2Department of Electrical and Computer Engineering, King AbdulAziz University, Jeddah, Saudi Arabia.

 Abstract— Software Product Line (SPL) Engineering is a widely used strategy for the efficient development
of family of software products that have common as well as variable features. In this approach, software
artifacts such as requirements specification, system architecture and design, components, etc are reused across
the family of a product line with/without some adaptations. SPL helps in producing quality software products
at a relatively shorten time to market as well as reduced development cost through the systematic reuse of
software artifacts. This paper discusses the variability concept in software product family using feature based
modeling. A case study is conducted to explore all valid combinations of features in order to generate a set of
unique products in a family using a variability management FeatureIDE tool. Further, the paper highlights the
cross-cutting concern in Variability.

Index Terms—Software Product Line, Variability , Software Architecture, Feature-Oriented Software Development, FeatureIDE

—————————— ——————————

1 INTRODUCTION
F we look in the past during 90’s we were using
software application using distributed system in
conjunction with component based model like

COM, DCOM, CORBA etc, to build single product,
but with the present market needs this approach
seems to be phased out because of software
product families demand, their narrow scope, high
development cost, platform/environment specific
last but not least a client specific.
Software Product Line (SPL) is increasingly
manifests the attention of software development
organizations because can addressed software
variability and helps in production cost reduction,
quality of service (QoS) and speedy released
schedule [1]. Most of the software companies who
adopted software product line already realized
that software product line has capabilities to fulfill
the current hunger for mass customization.

Applying software product line in building
Software product families using sets of interrelated
systems from common assets yield remarkable
improvements in customer satisfaction,
productivity, and improved time to market with
high quality product [2].

Adopting SPL required proper management and
implementation techniques as in realistic product
lines, variability proliferates, and it is often a cross-
cutting concern. Hence, systematic management of
the variability between the products is must to
avail the benefits of product line engineering [3].
Variability in software is the ability of a system to
be efficiently extended, changed, customized or
configured for use in a particular context [4], while
Product Line Variability describes the variation or
differences between the similar systems that
belong to a product line in terms of properties and
qualities [5].

Numerous languages are developed for efficient
and effective implementation of modeling and
reasoning in software variability. Most of these
languages either lack a solid conceptual basis
and/or a thorough formal semantics.
If there are ten different systems, we needed to
have 10 different copies. With the advent of web
based application the older model became obsolete

I

————————————————
• Dr. Asif I. Khan and Dr. Wajdi Al Jedaibi are working as faculty members

in the Department of Computer Science, Faculty of Computing and
Information Technology, King AbdulAziz University, Jeddah, Saudi
Arabia.
E-mail: aikhan@kau.edu.sa , waljedaibi@kau.edu.sa

• Md. Mottahir Alam is working as a faculty member in the Department of
Electrical and Computer Engineering, Faculty of Engineering,
King AbdulAziz University, Jeddah, Saudi Arabia.
E-mail: amalam@kau.edu.sa.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 585
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

as application was hosted in at one server and
single application is able to serve thousands.

Still the growing cost of development is the
nightmare for application consumer. At one side
where in the big organization phasing out the
legacy system needs hefty amount at the same time
Product based company releasing the newer
version of a single product almost every year.
Equipping with newer software requires training
of new software, development cost, maintenance
and evaluation cost.
Software Industries are broadly divided into three
ITES Information Technology Enabled Services, IT
Information Technology services and product
Based industries.

Variability in software helped in minimizing the
cost and effort and maximizing the efficiency. Like
a product based company designs the product
which is easy to customize which can sell before
ITES with minimum customization. In such way
product developed once can be reutilize with
minor changes.
Further, Products that incorporate variability are
helpful for various purposes for example multiple
user segments can be addressed, categorization of
price as per the products is possible, portability
support for different hardware platforms and
operating systems, provides different sets of
products customization as per the customer
requirement and needs and cover different market
areas and market structure[6].

Software variability modeling supports
development and reuses of several software
artifacts. Variability helps runtime deployment of
new version release of already deployed systems.
Software variability control commonalities and
differences between different component as
component differs in the way they communicate
and interact, further variability facilitates reuse of
software artifacts in multiple products in an
organized manner.

The paper is organized as follows: Section I
Describes Introduction of the paper, Sections II
Discuss Variability in Software product lines,
Section III Discuss Feature Modeling, Section IV
Case Study of Feature modeling, Section V
Highlighted Cross-cutting concern in Variability,
Section VI Discusses challenges related to
Variability in Software Product Line, Section VII
Conclusion and Future Work.

2 VARIABILITY IN SOFTWARE PRODUCT LINES
Software industry is observing and reporting
increasingly Software systems ability to vary
behavior during their lifecycles, this vary in
behavior may be variability in hardware to
variability in software systems. For example,
Airplanes manufacturers often use different engine
control software to construct numerous versions of
the same physical engine for different Airplanes
models. Second, to achieve economically
feasibility, software industry delay design stage to
the latest phase in the software deployment
lifecycle, as they find it is very expensive to reverse
design decisions once they are already taken [7].

Reusability in software engineering is defined as
the process of using existing resources
[Components, libraries, architecture, code, analysis
models, configuration management plans or
artifacts] to develop a new computer application.
Software reusability helps in developing and
maintaining computer application as software is
not build from scratch and resources used to build
the software are previously used and tested in
other similar domain.

Variability by definition means “ability to adjust or
likely to change or vary”. In Software Engineering
variability is by and large understood as capability
of a software system or artifact to efficiently
extended, configured and customized using an
organized structured manner for a particular
context [8].
Delaying design decisions until last stages of the
development process is possible with the inclusion
of Software variability. However, variability has to
be maintained (cost of maintaining variant feature)
which results in extra costs associated with these
delayed decisions. For instance, implementation
and testing is required for several version release
of a of certain system features [7].

Software product line engineering is employed as
one of the systematic software reuse where
product line deals with domain specific
components [9]. For the last several years Software
product line engineering rapidly emerging as an
important software development paradigm and
promising growing concept in the field of software
engineering.
 A software product line is a set of products
sharing common architecture and features, which
also have a capability to deals with product
specific features. Software product line is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 586
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

considered as the next logical step for reusing
software components and architecture over a
number of different applications in various
domains. Some of the benefits an organization can
avail by applying software product line are shorter
development time with high end of efficiency,
improved time to delivery, Easier reuse,
maintenance, integration and achieve mass
customization.
An example of a software product family can be
considered as different versions Microsoft Office
(Student/Home Edition, Small Business, Standard,
Professional and Ultimate). Variations include the
kind upgrade support (Can or can't upgrade to it
from earlier versions of Office or new release),
applications and features and it supports, licensing
agreements, and product price. A software product
family is intra organizational, and reuse of core
software components within the family [10].

For building large, efficient, high-quality SPF
systems it is very important to pay a lot of
attention to the general software architecture,
explicit architecture yield high quality and
Complex products, while quality, diversity, faster
time to market , Lower cost maintenance can be
achieved by software components. To manage
diversity, it is very important to have a generic
architecture with explicit variation points for SPF
[10].
Applying software product line in building
software application brings some risks which are
very important to carefully address if a company
want to adopt software product line.
For an organization software product line
approach is a new technical strategy and it requires
staff that are sound skilled as well as both expert
technical and organizational management
engineers.
Adoption of this new approach is challenging as it
concern with the employee’s roles and
responsibilities. Success of software product line
approach can be affected if there are resistances
within the adopting organization [9]. Oversight of
Sound technical and monitoring to the
development effort is a key for successful software
product line approach [2].

2.1 VARIABILITY TYPES IN SOFTWARE
PRODUCT LINE : the author [11] highlighted the
following different types of software product line
variability:

External Variability: This type of variability
includes all product line variability that is visible
to the customer. It thus includes variability that is
essential for defining a product line application.
External Variability is typically defined in the
requirements , payment methods for point of sale
(POS) terminal is an example of an external
variability as customers decide for each payment
method whether they need it or not (Pay with
credit card or Pay with cash).

Internal Variability: Internal Variability includes
all variability of the product line which is not
visible to the customer. Nevertheless, internal
variability is additionally required for deriving a
product line application.
Typically documented in other development
artifacts, often introduced due to technical reasons,
Example for Internal Variability: credit card
authorization mode, this variability is invisible to
the customer, based on the customer‘s network
infrastructure (Integrated Services Digital Network
(ISDN), Digital subscriber line (DSL) modem,
Virtual Private Network (VPN)), the installer of the
POS terminal chooses one of the three alternatives.

Mandatory Variability: Variability that must be
bound in any valid product line application. (More
precisely, a variation point that has to be bound)
Examples: for each car, a particular engine has to
be chosen, for each POS terminal at least one
method of payment must be offered.

Optional Variability: Variability that can
additionally be bound in an application. (More
precisely, a variation point that can but must not
be bound) Examples: An air-conditioning system
can be included in a car (with a choice between
automatic and manual adjustments) another
example multi-media ring-tones for a cell phone
(with a choice between MP3 and MIDI tones).
Deciding between external and internal variability
is influenced by business strategy, marketing and
complexity of the software product family.

3. FEATURE MODELING
Feature models are nowadays a popular formalism
for representing variability in an SPL [12]. A
feature is a prominent or distinctive user-visible
aspect, quality, or characteristic of a software
system[13].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 587
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

It can also be defined as an increment in
functionality provided by one or more members of
a product line [14].
The graphical representation of a feature model is
called as feature diagram, Feature modeling is
evolved around the notions of mandatory and
option feature and sub-feature of a product, these
hierarchy relations helps the selection process of
different product in the product family.
Feature diagram is represented using the concept
of a directed tree, The Root node in the directed
tree illustrate a concept and other nodes represents
features of the concept.

The subfeatures of a feature can either be optional
or mandatory, or can be in an Alternative-group or
an Or-group[15]. Feature diagrams plays a vital
role in the feature modeling. Feature models helps
to express variability in software product lines by
reporting features and their applicable
combinations[15].

FeatureIDE [16] is an Eclipse based plug-in that
provides integrated Development Environment
(IDE) supports for all phases of feature-oriented
software development from domain analysis,
domain implementation, requirements analysis, to
the software generation[15] [16].

To explain the very basic concept of software
product line (SPL), we take an example of human
family, we consider (wife- husband , son and
daughter) are the features of a family. A family
consist of mandatory feature wife and husband
and optional feature son and daughter. Fig. 1,
shows feature model of this software product line
(SPL).

Fig.1

Java source of the mandatory and optional features
are given in table 1. from the table it is very clear
that, son and daughter optional feature extends
husband and wife mandatory feature. The
husband and wife feature defines a single Java file,
Family. The optional features son and daughter
extend Family.

TABLE 1: SHOWS JAVA SOURCE FOR FAMILY SPL.
Husband & Wife Son Daughter

class Family {
 String wife, husband;
 public Family(String wife, String
husband) {
 this.wife = wife;
 this.husband = husband;
 }
 public void print() {
 System.out.println(wife +" & "+
husband);
 }

/*****************/
 public static void main(String[] args) {
 Family myfmily = new
Family("Bob","Alice");
 myfmily.print();
 }
}

class Family {
 String son;
 Family(String son) {
 this.son = son;
 }
 public void print() {

System.out.println(this.son);
 }

/*****************/
 public static void
main(String[] args) {
 Family myfmily = new
Family("Moody");
 myfmily.print();
 }
}

class Family {
 String daughter;
 Family(String daughter) {
 this. daughter = daughter;
 }
 public void print() {
 System.out.println(this.
daughter);
 }

/*****************/

 public static void main(String[]
args) {
 Family myfmily = new
Family("Lily");
 myfmily.print();
 }
}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 588
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

In the given SPL example, there are 4 achievable
products (programs). The table 2 lists each
configuration/program and the possible output
after the program get executed:

TABLE 2: SHOWS CONFIGURATION AND ITS OUTPUT

Configuration Production (product)

Husband & Wife Bob & Alice
Husband & Wife + Son Bob & Alice Moody
Husband & Wife +
Daughter

Bob & Alice Lily

Husband & Wife + Son +
Daughter

Bob & Alice Moody
Lily

in SPL configuration is nothing but selection and
de-selection of the features from the feature

model. Fig. 2 below shows the selection of the
Husband-Wife and Son features, so, there are two
possible configuration in this selection as shown in
Fig. 2.

Fig. 2 shows selection of features in SPL

The Fig. 4 below shows the selection of the
Husband-Wife, Daughter and Son features, so,
there is only one possible configuration in this
selection as shown in Fig. 3.

Fig. 4 shows selection of features in SPL

Fig. 3 shows statistics of family in SPL

4 CASE STUDY:
 In this section, we try to explore in detail about
feature modeling with the help of a camera feature
model case study. Now a days, customers have the
advantages of selecting available features in a
camera as per their requirement by selecting
different variants in a given product line of
camera. Features such as Body type selection,
screen selection, flash selection, eye auto focus,
face recognition, and tracking are customizable.

Domain analysis is first done, domain and their
dependencies is constructed using a Feature model
tool (FeatureIDE), a feature model can be
constructed graphically by adding and removing
features in a FeatureIDE graphical editor[16].

Fig. 5 shows a feature model of a system, called
Camera . Nodes represent features and edges show
relationships among features. A single root node,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 589
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Camera, represents the specific domain being
modeled.
Connections between a feature and its group of
subfeatures can be and-, or-, and alternative
groups [17] .
 The sub-features of and-groups can be
either mandatory or optional. Optional features are
represented with an empty circle, such as Remote
Control, Wireless etc in Fig. 5.
These features may or may not be part of a
product. On the other hand, mandatory features,
such as Body Type, Image Sensor, and
Connectivity etc are represented by filled circles
and are part of all products in that specific SPL.
Further, there are alternative features which may
be exclusive (XOR) or not exclusive (OR).

Example of exclusive feature is Body Type as
shown in the Fig 5. representing the Feature

Diagram of the Camera. A feature is exclusive
implies that only one sub-feature can be selected
from the alternatives. Thus, Compact,
UltraCompact, and LargeSensorCompact are
alternative features for Body Type. Examples of
OR features in the Fig. 5 are Articulated LCD,
Screen size, Touch Screen, and Live View which
allows the selection of more than one option for a
product.
 Apart from features and their relationships, a
feature model can also include composition rules
[18]. A composition rule refers to additional cross-
tree constraints to restrict feature combinations
[12]. It helps in validating a combination of
unrelated features which cannot be expressed
otherwise. A cross-tree constraint is a propositional
formula over the set of features and usually shown
below the feature diagram [16].
.

Fig. 5: Feature-diagram example of a camera product

In brief, a Feature model can be summarized as
follows: the selection of a feature implies the
selection of its parent feature. Also, if a feature is

selected, all mandatory sub-features of an and-
group must be selected. For optional feature, at
least one sub-feature must be selected while in case

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 590
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

of alternative feature, exactly one sub-feature is to
be selected line.

Finally, all cross-tree constraints must be fulfilled.
A configuration is a subset of all unique and valid
combination of features defined in the feature
model. A configuration is valid only if the
combination of features is allowed by the feature
model.

FeatureIDE also support requirements analysis by
a configuration editor. domain implementation is
also supported by FeatureIDE using SPL
implementation

tools , The editor gets the feature model from
domain analysis as input and offers configuration
choices[16].

Configuration editor as shown in Fig. 6 shows an
invalid configuration and some highlighted
features. Selecting one of the green features results
in a valid configuration.

On the right side, the advanced configuration
editor is shown, in which features can be
eliminated to reduce the remaining configuration
options.

Fig 6: Configuring features in the camera product

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 591
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5 CROSS-CUTTING CONCERN IN
VARIABILITY

The term crosscutting concerns refers to common
functionality every software application needs like
authentication, authorization, caching, exception
management, logging and instrumentation,
validation etc. but these are not necessarily must
have components. And depending on the
environment and exposure these things needs to be
handled. Following are few examples to illustrate
the concept further [19]:

Authentication: to verify who you are - i.e. Is the
user really who he/she represents himself to be?
Now you may or may not need this step
depending on scope of the application. But if it is
User Interface (UI) based most likely you should
have one. But if it intranet based running in inside
firewall i.e. only for internal user, does not do any
update but view only and application takes care of
volume i.e. it restricts or deny request which may
hang system/network etc. And there are
applications which do not have UI and to
communicate to the application is to write some
code/interface then you may not need it.
In one application back-end service I worked
which mainly does read only service and run
inside corporate network inside firewall- did not
have any authentication. Now the authentication
used to be part of applications and still it is for
much new and old application. But now it is
changing, often organization are using common
tool/app may be third party like site minder, or
using common LAN ID (LDAP etc.) which restrict
outside user. So the authentication part is outside
of the application.

Authorization: Is the process or a method by
which a computer system verifies about level of
access an authenticated user should gain. So in UI
based application user accessibility of system may
be different based on the assigned privileges, some
function may be disabled/invisible to user. Now,
this component is also used to be integral part of
application.
Trend has changed how to implement those as
separate entity and pluggable. For example in
some project the entitlement is done centrally and
other application plug into this service. Other
entitlement is to data e.g. in a financial company
different user will have different access level to a
fund. This may be one row in database table but
will have different access. This access level can be

implemented in each application or subscribe to a
service specific for that purpose.

Caching: Depending on the application
performance/scalability application needs to cache
data. Caching usually means caching within the
application but that concept is slowly diminishing.
There are different caching methodologies that can
be used. For example caching for limited time
(allotted time) or caching as per availability of
memory, First in First out (FIFO)/ Last in First out
(LIFO), or based on frequency of use.
Other implementation is similar to virtual memory
which does not limit to available memory. Caching
technique used to be spread across the application
but now mostly centralized caching is used which
are more configurable and manageable.
Compartmentalize caching is done using different
service based on category of data.
For example instead of storing all reference data in
the application itself it uses other reference data
service which does the caching. Modern
architectures are done to use easily pluggable
caching service. Refreshing caching is done on
demand or by some automated process, or
sometime event base e.g. when data is changed at
source some event can be generated to refresh
caching.

Communication: is a mainly deal with the
communication between components across layers
and tiers. Deployment scenarios play an important
role and the application must support the
communication mechanism, many enterprise
application uses message queue to communicate
between different functionality and application.
For example to remove caching and reload data
can be done using MQ. Other scenario is
communication with other application/layer is to
make it transparent to calling part and making it
configurable.

Exception management: another crosscutting
concern responsible for security and reliability.
Increasingly getting customized based on
application. One popular exception handling is
bubble up i.e. logged and transformed as necessary
before passing them to the next layer. Failure
should not leave the application in an unstable
state/failed state, and that exceptions do not allow
the application to reveal sensitive information or
process details. Exception logging can be done as

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 592
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

simple text out or store in database or some time
creating application specific format to
recover/replay.

Logging and instrumentation: logging may be
required for different purpose, one common use is
debugging application exception, but based on
scope of application it can have other use e.g. a
financial application may required to maintain the
signature of each stage of transaction for audit or
legal purpose. Logging is implemented some time
to use trace listener so as to configure at runtime.
New application mostly use centralized specialized
component for logging some time services are used
for logging.

Validation: Helps in maintaining reliability as well
as usability of an application. Lack of validation in
an application results several issues such as data
redundancy and inconsistencies, violations found
in business rules and unacceptable usability
experience. In addition, security issues such as
cross-site scripting attacks, SQL injection attacks;
buffer overflows etc. can be vulnerable to
application. Organization often uses already built
in component or service which proved to do good
amount of validation. There are rule based
validations which can be configured without doing
code change.

6 CHALLENGES RELATED TO

VARIABILITY IN SOFTWARE
PRODUCT LINE

Variability in software product line comes up with
broad range of challenges both technical and non-
technical; following are some of such challenges
highlighted by [20]

 How to model variability
 How to handle system complexity
 How to handle product line architecture

and documentation issues.

Variability assessment means process of finding
how, when and where variability should evolve,
variability assessment analyses the product family
artifacts to find the mismatch among them [21] ,
also, it helps to know how far the product family
be able to support a new product. Important issues
related to variability assessment are listed by [21]

 First issue is the lack of explicit
methodological guidance resulted in
unpredictable outcomes and waiting of
efforts.

 Second issue is the lack of availability of
expert and timely pressure resulted as
mostly assessments are done for needs of
immediate problems.

 Third issue as per author is generalization
over a number of features.

 If obsolete variability are not discarded
from the core functionality, it leads to
complexity of the product family but
predictability and traceability reduced.

 Another issue that is highlighted by the
authors is the lack of techniques for
addressing variability at all levels of
abstraction, for cases where there is a
major change in the product family
artifacts at component and architecture
level.

 In case of variability mismatch occurrence
there is a lack of alternative solutions.

7 CONCLUSION AND FUTURE WORK
Software Product Line is an emerging
methodology to develop a family of software
products by reusing sets of artifacts. In this paper
we used an open source tool, FeatureIDE, to
conduct a case study to analyze different aspects of
variability management in SPL.
We found that FeatureIDE is one of the best
available tool that can be integrated with the
development process and it supports different
languages for SPL implementation. Further, we
discussed cross-cutting concerns and challenges
related to variability in software product line.
In future we will extend our study to perform
qualitative analysis on different available
variability management tools.

REFERENCES
[1] F. Ahmed, L. F. Capretz, The software product line architecture:
An empirical investigation of key process activities, Information and
Software Technology, v.50 , (October, 2008.), n.11, p.1098-1113.
[2] a framework for software product line practice, version 5.0,
software engineering institute, carnegie mellon university, web url:
http://www.sei.cmu.edu/productlines/frame_report/introductio
n.htm
[3] M. Voelter, Handling Variability, Version 2.0, December 11, 2009,
Hillside Europe.
[4] M. Svahnberg, J. V. Gurp, and J. Bosch. , A Taxonomy of
Variability Realization Techniques. Software Practice and
Experience 35 (2005), no. 8, pages 705-754.
[5] A. Metzger, P. Heymans, K. Pohl, P.Y. Schobbens and G. Saval,
Disambiguating the documentation of variability in software
product lines: A separation of concerns, formalization and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 593
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

automated analysis, In: Sutcliffe, A., ed.: Proceedings 15th IEEE
International Conference on Requirements Engineering, 15-19
October 2007, New Delhi, India, IEEE Computer Society, 2007.
[6] T. Asikainen, A conceptual modeling approach to software
variability, Doctoral Dissertation, Helsinki University of Technology,
Faculty of Information and Natural Sciences, Department of
Computer Science and Engineering, 2008.
[7] A. Lapouchnian, Exploiting Requirements Variability for
Software Customization and Adaptation. PhD. Thesis, Department
of Computer Science University of Toronto. 2011.
[8] M. Galster and P. Avgeriou, Handling Variability in Software
Architecture: Problems and Implications, Proceedings of the Ninth
Working IEEE/IFIP Conference on Software Architecture, 2011.
[9] p. Kuvaja, j. Similä and h. Hanhela, software engineering
techniques, lecture notes in computer science, 2011, volume
4980/2011, 143-157.
[10] r. V. Ommering and j. Bosch, building reliable component-
based software systems , components in product-line architectures,
(2004), artech house boston ,london.
[11] K. Pohl , Paluno, The Ruhr Institute for Software Technology ,
Universität Duisburg-Essen , web url:
http://www.cse.msu.edu/~cse435/Lectures/2010-
Lectures/Notes/Lecture11b- Product-Line-Variability-Pohl-
notes.pdf
[12] Czarnecki, K., Helsen, S., and Eisenecker, U. “Formalizing
Cardinality-based Feature Models and Their
Specialization”.Software Process: Improvement and Practice, vol. 10,
issue 1,2005, pp. 7-29
[13]Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A.
S., 1990. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering
Institute.
[14] Batory, D., Sarvela, J. N., and Rauschmayer, A. Scaling step-wise
refinement. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering (Washington, DC, USA, 2003),
IEEE Computer Society, pp. 187–197.

[15] A Quick Tutorial on FeatureHouse and FeatureIDE,
http://www.cs.utexas.edu/users/dsb/cs392f/Videos/FeatureHo
use/FHTutorial.htm
[16] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens
Meinicke, Gunter Saake, and Thomas Leich.FeatureIDE: An
Extensible Framework for Feature-Oriented Software Development.
Science of Computer Programming, 79(0):70-85, January 2014.
[17]Batory, D., 2005. Feature Models, Grammars, and Propositional
Formulas. In: Proc. Int'l Software Product Line Conference (SPLC).
Springer, Berlin, Heidelberg, New York, London, pp. 7-20.
[18] T. Thüm, C. Kästner, S. Erdweg, N. Siegmund, Abstract features
in feature modeling, Proc. Int’l Software Product Line Conference,
SPLC, IEEE, Washington, DC, USA (2011), pp. 191–200.
[19] J.D. Meier, A. Homer, D. Hill, J. Taylor, P. Bansode, L. Wall, R.
Boucher Jr and A. Bogawat, Business Layer Guidelines, patterns &
practices Application Architecture Guide 2.0.
[20] L. Chen, M. A. Babar , N. Ali, Variability management in
software product lines: a systematic review, Proceedings of the 13th
International Software Product Line Conference, August 24-28, 2009,
San Francisco, California.
[21] S. Deelstra, M. Sinnema, J. Bosch, Variability assessment in
software product families , in Journal of Information and Software
Technology, 51 (2009), pp. 195–218.
[22] A. I. Khan and et. al., "A Comprehensive Study
of Commonly Practiced Heavy and Light Weight Software
Methodologies", IJCSI International Journal of Computer Science
Issues, Vol. 8, Issue 4, No 2, July 2011, ISSN (Online): 1694-0814,
www.IJCSI.org.
[23] A. I. Khan and et. al., "An Improved Model for Component
Based Software Development", Software Engineering, Vol. 2 No. 4,
2012, pp. 138-146. doi: 10.5923/j.se.20120204.07

IJSER

http://www.ijser.org/

	1 Introduction
	2 Variability in Software product lines
	3. Feature Modeling
	4 Case Study:
	5 CROSS-CUTTING CONCERN IN VARIABILITY
	6 CHALLENGES RELATED TO VARIABILITY IN SOFTWARE PRODUCT LINE
	7 CONCLUSION AND FUTURE WORK
	REFERENCES

